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Abstract- --Appropriately transformed, the classic analytical description of the counterflow regenerator 
lends itself to straightforward algebraic sol&ion. Flushing ratios of any magnitude are accommodated, 
and all regimes of solution are described froA initial blow through to cyclic equilibrium. The uniform 
particle velocity of the original treatment may be substituted by simple harmonic motion without compli- 
cation, affording insight into conditions in the Stirling engine. Temperature recovery ratio is shown to be 
an inadequate guide to overall thermal performance. A more revealing index is derived by taking pumping 

loss into consideration. Design charts are presented. 

BACKGROUND 

ONE OF engineering’s most enduring analytical prob- 
lems [l], until its definitive solution [2, 31, has been 
that of describing the start-up and cyclic performance 
of the counter-flow thermal regenerator. 

The regenerator is a matrix of porous solid cycli- 
cally heated and cooled by alternating currents of hot 
and cold fluid (Fig. 1). Amongst several applications 
it functions as the crucial, central component of the 
Stirling cycle machine. 

An outline of the regenerator problem, and of the 
attempts which have been made at solution, may be 
found in ref. 4, which offers a novel analytical state- 
ment based in Lagrange coordinates, and which 
acquires specimen solutions with the aid of the 
computer. It has since been found possible [3] to take 
the analytical process forward without complication 
to an explicit statement of local, instantaneous differ- 
ence between gas temperature and matrix temperature 
and thus, effectively, to a one-line solution. The r81e of 
the computer is then merely to make the substitutions 
required for display of specimen temperature profiles, 
and to process the solution i-epeatedly to give recovery 
ratio as a function of the operating parameters. 

Earlier attempts at solution were so involved, and 
eventual solution so straightforward, that it is appro- 
priate to seek an explanation for the contrast. This 
appears to be as follows: the analytical pioneers-- 
principally Hausen [5] and Nusselt [6]-appear to 
have adopted a mechanical approach to solution at 
the expense of such physical realities as the fact that 
local, instantaneous heat exchange rate is at all times 
and locations related to local, instantaneous differ- 
ence, AT. between wall and gas temperatures, and that 
AT is thus the ‘natural’ dependent variable of the 

problem. Most other analysts followed suit. The result 
was algebra of such complexity that the only solutions 
which could be obtained were those which ignored the 
flushing phase-i.e. that part of the blow involved in 
removing the residue of fluid from a previous blow. 
By contrast, the transformation which now permits 
ready solution is based firmly in the physics of the 
heat exchange phenomenon. 

The transformation applies to an analytical descrip- 
tion extended to take account of conditions rep- 
resentative of the practical Stirling machine. This 
paper obtains solutions taking account of: 

simple harmonic particle motion ; 
low flushing ratios ; 
specific matrix geometry-weave of mesh, wire 
diameter, pitch, porosity, etc. of wire material ; and 
heat transfer and flow friction effects characterized 
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FIG 1. Coordinate system for counterflow regenerator. 
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NOMENCLATURE 

constant terms, defined in text 
free-flow cross-sectional area [m’] 
abbreviations for terms considered 
constant over an integration step, 
defined in text 
specific heat at constant 
pressure/volume [J kg~~ ’ K~ ‘1 
friction factor = (equivalent wall 
shear stress)/:& 
common specific heat (incompressible 
fluid) [J kg- ’ K - ‘1 
diameter of wire of regenerator gauze 

[ml 
mean mass velocity, pu [kg m ’ s- ‘1 
enthalpy per blow [J] 
coefficient of convective heat transfer 
[W m-’ K-‘1 
length [m] 
a reference length-may be Lreg 
(below) [m] 
overall physical length of regenerator 
packing [m] 
mesh number-number of wires/unit 
length [m - ‘1 

c&r&C,,) 
Stirling number, prer/cup 
characteristic Reynolds number = 
&&A 

local, instantaneous Reynolds 
number = 4pur,/p 
Stanton number = h/gc, 
characteristic temperature ratio, TE/Tc 
(note that this is the inverse of the 
traditional definition of temperature 
ratio for Stirling cycle machines, but 
consistent with more recent notation) 
thermal capacity ratio = pwcw/pc for 
incompressible fluid, or Trefpwcw/pref for 
compressible fluid. Respective 
numerical values differ by a factor 

(;-1)/l; 
‘number of transfer units’, Nsrx/rh, 
N,,LreeIrh 
number of regenerator sub-divisions 
wetted perimeter [m] 
absolute pressure [Pa] 
reference pressure [Pa] 
volume flow rate [m’ s- ‘1 
gas constant for specific gas 
[J kg-’ K-‘1 

in terms of local. instantaneous Reynolds number. 

N,,. 

rh hydraulic radius, free-flow area/wetted 
perimeter [m] 

t time [s] 
T,, TE constant, uniform temperatures of 

gas entering from right and left extremity 
of regenerator, respectively [K] 

u ‘utilization factor’ employed by 
Hausen and defined in text, 

u = J-flAHaucen 
U velocity [m s- ‘1 
u normalized velocity, u/roL,,, 
.Y length coordinate [ml. 

Greek symbols 

Y specific heat ratio, c,/cV 
F regenerator ‘inefficiency’, defined in 

text 

‘I temperature recovery ratio, defined in 
text 

A reduced length or ‘flushing ratio’- 
ratio (gas particle excursion 
amplitude)/& 

A Hsusen ‘reduced length’ employed by 
Hausendefined in text- 
equivalent to NTU 

/1 normalized length/distance, l/LCer, 
dL,ef 

Ah normalized hydraulic radius, rh/lref 
n reduced period employed by Hausen 

and defined in text 

P density [kg m-‘1 

4 crank angle (or dimensionless 
time) = it [rad] 

w angular frequency = 27~1, [rad s-l] 
c \ volumetric porosity z 1 - 1/4{nm,~f~ 

for rectangular wire gauze. 

Subscripts 

g gas or fluid 
i ith location along axis representing 

time (or dimensionless time) 

i jth location along axis representing 
distance (or dimensionless distance) 

Hausen as used by Hausen 
w wall, wire 

(underscore) mean value during finite 
interval of numerical integration step. 

1 

siting between heater and cooler of the planar equiv- 
alent Stirling machine. An element dx long at location 
x from an origin at the expansion end is identified for 

Figure 1 represents the regenerator in its conventional the purposes of control-volume analysis. 
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There are several, independent sources of evidence, 
e.g. ref. [7], that the angular phase difference between 
a surface temperature disturbance and centre-line 
response in the individual regenerator wire of the typi- 
cal, high-performance Stirling machine at rated 
operating conditions is negligible, being of the order 
of 0.2” of crankshaft rotation. On this basis, it is 
proposed to treat transient response of the system in 
isolation from conditions internal to the individual 
wire. 

TRANSIENT THERMAL RESPONSE 

Assumptions 
Fluid entering from the left (expansion exchanger) 

does so at temperature Tr ; that entering from the 
right (compression exchanger) at Tc. 

Within the fluid there is zero diffusion an d drs- 
persion of temperature information parallel to flow 
direction, but instantaneous diffusion of temperature 
information perpendicular to that direction (see pre- 
vious section). Hence, fluid properties are uniform in 
a plane perpendicular to flow direction, as is matrix 
temperature. 

Fluid flow is simple harmonic. Extension of the 
treatment to flow patterns computed for specific 
Stirling machines is straightforward. 

The matrix is stacked from rectangular-woven 
wire screens having wire diameter d, and mesh 
number m,, volumetric porosity, TV % 1 - 1/4{n~&} 
[7] and corresponding hydraulic radius, rJ& = 
l/4(1,/( 1 - TV)}. Wire material properties may be 
functions of temperature in the fashion of c, = 

c,,,(l +aJIT,r). 
Heat transfer coefficient, h, and friction factor, Cr, 

are local, instantaneous values defined in terms of 
steady-flow correlations for the wire mesh in question 
by NSt = N,,(N,,N$‘), Cr = Cr(N,), N, being derived 
from local, instantaneous p, U. 

Defining equations 
The treatment follows the algebra of ref. 3 : with A, 

for cross-sectional free-flow area, and P for wetted 
perimeter the energy equation for the gas element is : 

h[T,,,(x, t) - T,(x, t)]Pdx = puc,A,[3T,(x, t),‘ax] dx 

+p~,A,dx[ST,(x, r)/&)]. (1, 

Equation (1) neglects kinetic energy effects, as is cus- 
tomary in treatments of the regenerator. 

Denoting volumetric porosity of the matrix by I’.,, 
the energy balance for the solid material of the control 
volume may be written : 

h{T,(x, t) - T,(x, t)} Pdx = p,c,A,dx 

x (lr%) nT$t). (2) 
Y 

For the rectangular-woven wire screen f> % 
1 - 1,4{zm,d,,j and equation (2) takes account 

appropriately of wire diameter, d,,,, and mesh number, 

Q/. 
The novelty of the present treatment resides largely 

in working in terms of local, instantaneous tem- 
perature difference, AT(x, t) = T,(x, t) - T,Jx, t). 
Omitting the subscripts for brevity and subtracting 
T, from each isolated occurrence of T, (and adding 
again) : 

-hATPdx = puc,A,(FAT/dx+aT,/dx)dx 

N,, is defined as h/plujc,. This is a modulus, whereas 
flow direction takes alternating sign. Rearranging and 
taking account of the possibility of positive and nega- 
tive u : 

- (N,,i[r,sign (u)]}AT = aAT/iix+~T,./ax 

+(ll’ju)(dAT/at+aT,/at). (3) 

Treating equation (2) in a similar way and inverting : 

(i&)aT,jat = {N,J[yr,sign (u)]}AT& $” 
/Y WC% 

(4) 

Equation (4) is substituted into equation (3) : 

+aT,/ax yuAT= i3AT/at+yuaAT/ax. (5) 
) 

From the definition of the substantial derivative, the 
right-hand terms, in combination, denote the total 
change in AT in the direction yu in the time-distance 
plane. All of the milestone analyses [2, 5, 6, 81 infer 
an incompressible fluid : in the work of Hausen [5] and 
Nusselt [6] this shows up in the constancy of u and p ; 
in the Heggs and Carpenter approach [2], and in that 
of Miyable et al. [8] the condition is expressed in 
use of cp in both convective (a/&) and a/iit terms (y 
replaced by unity). Although the present treatment 
may be pursued without the need for this simpli- 
fication, it is adopted with a view to showing that 
the classic formulation lends itself to ready algebraic 
solution. With y accordingly replaced by Unity, equa- 
tions (5) becomes : 

~ (N,,:[r,sign (u)]j 1 + 
[ 

7, wp 
(l-7,) PUC, 

+?T.JBx 
I 

uAT = ?AT/‘iit+uL7AT/3.x. 

The first term on the right is now self-evidently the 
substantial derivative, D/dt, inviting re-writing as 

I 
AT 
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Equation (6) places no restriction on particle dis- 
placement relative to regenerator length, and to this 
extent is apt for conditions in the Stirling machine 
where values close to unity are the norm. 

At cyclic steady state in a Stirling machine of viable 
design (i.e. with an efficient regenerator) the swing in 
absolute T, with time (crank angle) is finite, but the 
gradient, o’T,(x, t)/ax, is substantially constant and 
uniform for all x, t (71. This is increasingly so with 
increasing thermal capacity ratio, NTCR = pwc,/pcP, 
and points to a special case of the classic regenerator 
problem (u uniform between switching) having a par- 
ticularly simple solution. With aT,/ax truly constant, 
equation (6) is integrable analytically over a complete 
blow; where the variation in i?T,/a.u is significant, 
solution proceeds by integrating over small intervals 
using appropriate values of (variable) i?T,/iix at each 
step. If i3Tw/3x is not strictly uniform and constant 
but nevertheless nearly so, the one-step integration 
process may be expected to yield an approximation 
for AT(x, t). 

Normalization-the concept qf’ushing ratio 
The system of dimensionless parameters introduced 

by Hausen has become the norm. He defined [l] a 
reduced length, Amuse”, essentially as : 

A 
MvLe, 

Hausrn = ___ = N,, L,,,lr,,. 
P+% 

(7) 

Hausen’s reduced length has little to do with length, 
and everything to do with NTU. The combination of 
variables defined in equation (7) will accordingly be 
denoted by this latter symbol. Hausen also defines two 
other parameters, namely, reduced period, II, and 
utilization ratio, U: 

hA, tbloa, 
rI------ 

m,c, ’ 

iJ=n/lz= 
P+‘tdb,ow 

mwcw 

(8) 

(9) 

I/ specifies the ratio of thermal capacity of the gas per 
pass to that of the matrix. The definition of U in terms 
of II and A means that any two of the parameters 
suffice for the Hausen approach. Here we choose to 
continue in terms of NTU and U-the latter modified 
by mvertmg and denotmg NrCR : 

when dealing with incompressible fluids, (lOa) 

T,ef~a (‘u NTCR = ___ for the compressible fluid. (lob) 
P&p 

Where the full form of the energy equation is retained, 
as here, NTU and NTCR are insufficient to define the 
solution. The need for an additional parameter is 
readily appreciated from specimen particle trajectory 

2x- 

t------ 
b 

i 

0 L 
1% 

Fto. 2. Trajectories of selected fluid particles for flushing 
ratio, A, = unity. 

diagrams. Figure 3 complements Fig. 2 with instances 
where: (a) particle amplitude is less than overall 
length of regenerator, Lreg ; and (b) amplitude exceeds 
L,,. In the former instance, a slug of fluid (shown 
hatched) oscillates within the matrix without exiting 
either end. In the latter, the matrix is completely 
flushed once per cycle, although not every particle 
which enters passes right through. 

Figures 2 and 3 confirm that there are, in the general 
case, three solution domains ; one for fluid which 
enters at temperature TE at the left-hand extremity, 
and which exits left; a second for fluid which enters 
from the right at TC and which exits right ; and a third 
for any fluid which never exits either end. Solutions 
for the first two cases are determined by conditions at 
the boundaries, that of the third by initial values. 

The parameter which determines how many solu- 
tions are in question isflushing ratio. Hausen’s symbol 
A is taken over to denote this quantity, defined as the 
ratio [particle amplitude]/L,,,. 

As regards normalized forms of dependent and 
independent variables, earlier treatments [4, 71 have 
established a system including crank angle (or dimen- 
sionless time) 4 = cot, and dimensionless velocity nor- 
malized by reference to angular frequency, nsr on the 
basis that this latter variable is of more immediate 
engineering significance than angular frequency, w. 
However, the expedient results in appearance of con- 
stant multipliers 27~. In this paper, w will be used in 
the construction of normalized variables previously 
involving n,. Thus, speed parameter (or charac- 
teristic Mach number, NMA) becomes wL,J~I(RT,,~), 
Stirling number, Nso, becomes p,,,/(wp) and dimen- 
sionless velocity, u, = u/wL,,,. Conversion from the 
‘engineering’ quantity rpm to w is readily achieved on 
the basis that o = rpm/lO. 

Making equation (7) dimensionless puts it straight- 
way into a form ready for integration : 
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(a) 

(b) 

I -k5 I 
0 1.0 

FIG. 3. Flushing ratios (a) less than and (b) greater than 
unity. In the former case, there are 3 distinct solution regimes, 
one each for fluid particles which enter at one end and leave 
by the same end, and a third for the slug of fluid which 
never exits either end. (a) Flushing ratio, A, = 0.5, showing 
(hatched) slug of gas which oscillates within the matrix with- 

out leaving either end. (b) Flushing ratio, A, = 1.5. 

s DAt 
-=-a d4 
Az+b/a* s 

b = uaz,jaa.. 

Upon integration : 

Az+bla 
---2 = exp[-a(@--&)]. 
ArO + b/a (111 

At first sight, the parameter A is absent from the 
solution. In fact, it is present via the definition of u : 
particle displacement, X, is given by x = Xsin (wt), so 

that, as a fraction of Lreg, and in terms of dimen- 
sionless time, 4, x/L,,~ = i = Asin4. u = d/l/d+ = 
A cos 4, and A is, indeed, a parameter of the solution. 

Equation (11) may be contrasted in terms of its 
simplicity with the expression spanning many lines 
reached by Miyabe et al. on Laplace transformation 
of the energy equation. Even starker contrasts are 
with the daunting intricacy of solutions by Hausen 
and Nusselt-solutions which in any case embody 
compromise, which makes it virtually impossible to 
represent short blow times. 

Consistent with the definition of the substantial 
derivative, equation (11) applies along particle tra- 
jectories (Heggs’ and Carpenter’s ‘characteristics’) 
The ‘characteristic’ directions along which changes in 
AT are calculated are the particle paths inclined at 
+ 1 /u in the time-distance (4-n) plane. 

It is not essential to proceed to the solution stage in 
order to be in a position to verify the self-evident 
physical meaning of equations (11) : 

??For thermal capacity ratio, Nrck = pWcW/pc,, effec- 
tively infinite (regenerator thermal capacity/unit 
volume greatly in excess of that of working fluid) 
aT,/ax is uniform and invariant by definition. The 
magnitude of a then reduces to NTU/sign (u) and 
the solution for Ar (local, instantaneous, dimen- 
sionless temperature difference) is that for the 
balanced, counterflow recuperator. Absolute gas 
temperatures are achieved by simply adding 
appropriate values of (invariant) wall temperature 
distribution, as intuition dictates. 
Under the above conditions, the solution for the 
gas is independent of that of the wall. It applies 
over any desired time step, 4 - &, provided account 
is taken of any intervening change in sign of u. 
Under these same conditions (NrCR = pWcW/pcp, 
effectively infinite) AZ at given location and time (or 
crank angle, 4) depends only on initial temperature 
difference (e.g. at entry), length of time (4 - &) for 
which the particle has been in contact with the wall, 
and NTU. 

Wall temperature 
In the general case (thermal capacity_ratio finite) 

wall temperature is a function of time and location. 
Normalizing equation (4) and taking into account the 
definition of thermal capacity ratio, NTCR : ” 

Equation (4a) confirms that, for sufficiently large 
N rca, &.,,/a~ = zero, signifying that wall temperature 
distribution, z,, does not vary with dimensionless 
time, Cp. 

For NTCR and NTU finite, determination of zg and Z, 
for all 4, I requires simultaneous solution of equations 
(11) and (4a), calling for working in a combination of 
Lagrange and Euler coordinates. Appropriate choice 
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FIG. 4. Integration grid. At the nodes formed by intersection 
of particle paths (Lagrange system) and the rectangular grid 
(Euler system) equations for temperature difference, AT, and 
wall temperature have simultaneous solution. (a) Integration 
sequence on forward (left-to-right) blow illustrating ‘unit 
process’. (b) Integration grid superimposed over fluid par- 

ticle trajectories. 

of integration grid renders straightforward an appar- 
ently daunting prospect. 

UNIT PROCESS FOR INTEGRATION 

Interior points 
Equation (11) applies along a particle trajectory, 

while equation (4) for the wall applies at constant 
location, 1. With wall and gas temperatures known 
(or assumed) at a starting value of dimensionless time, 
4. integration may proceed without interpolation : in 
Fig. 4a a particle at location i,j at time, qS(i,J is at 
position if 1, j+ 1 after time increment A4. With AI$ 
adjusted in relation to AL such that the new location 
time i+ 1 coincides with the ‘old’ location of the adjac- 
ent particle at time i the ‘new’ wall temperature, 
s,,(i+ 1 .j+ 1) and ‘new’ value of temperature differ- 
ence, At(i+ l,j+ l), have simultaneous solution at 
point i+ 1, j+ 1. Figure 4b shows the integration grid 
set up to ensure coincidence of the points at which 
equations (11) and (4a) have common solution. The 
grid differs from the simple, Cartesian form only to 

the extent that increments in A$ vary over a half cycle 
(i.e. between 0 and 7~ rad). 

Boundary conditions 
The ‘unit process’ described above for integration 

applies at all points except the left-hand boundary on 
the forward (left-right) blow and at all points except 
the right-hand boundary on the reverse blow. 

Defining the new temperature difference and the 
new wall temperature at the boundary is an essential 
part of the integration sweep, but is elementary. It is 
dealt with in the Appendix. 

SPECIMEN TEMPERATURE PROFILES 

With the Stirling cycle machine in mind, and with 
a view to speeding convergence of solution on cyclic 
steady state, wall and gas temperatures are set initially 
to a linear distribution from TE at the expansion end 
to TC at the compression end (in normalized form, 
from NT at i = 0 to unity at 1 = unity). Figure 5 
illustrates the startup blow and first reverse for (a) gas 
and (b) wall for values of the parameters A, NTU, 
N TCR stated with the figure. A thermal capacity ratio, 
N l-cCR> of 10 is small for Stirling machine use, having 
been chosen to exaggerate matrix response. The pro- 
files for the gas show clearly the discontinuity in tem- 
perature left at completion of the first blow which is 
pushed back into the matrix as a wave. Because the 
numerical phase of the solution is based on a finite 
number of particle trajectories, the discontinuities are 
of finite gradient : for an infinite number of trajectories 
they are infinitely steep. 

Figure 6 shows temperature profiles after attain- 
ment of cyclic equilibrium (5 cycles for the parameters 
cited). The temperature envelopes follow the classic 
pattern, but internal to the envelopes may be seen the 
waves which arise at flow reversal and which survive 
the first stages of the following blow. The phenom- 
enon is clearly on the temperature reliefs. For values 
of NTU and NTCR typical of the Stirling machine, fluid 
temperature excursions are less pronounced, those of 
the wall even less so. 

REGENERATOR INEFFECTIVENESS, E 

The standard measure of regenerator performance 
under given operating conditions is recovery ratio, q, 
defined as : 

s 
m’c,(T:;y’-T,,)dt 

‘I= 

s 

(12) 
m’c,(T:~‘- T,,) dt 

The definition gives rise to two difficulties : 

(a) The definition takes no account of pumping 
power, ApQ’ : for purposes of thermodynamic 
design it is necessary to take account of the trade- 
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(a) 
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FIG. 5. Gas temperature reliefs for initial blow and first reverse. Flushing ratio, A, = unity, NTU = 10 and 
N TCR = 10. (a) Temperature relief for fluid. (b) Temperature relief for wall. 

off between increased recovery ratio and con- 
comitant increased pumping power. 

(b) Recovery ratios in the range 95-99% are of inter- 
est for Stirling cycle machines. Forms of display 
accommodating recovery ratios calculated for a 
wide range of NTU, etc. have poor resolution in 
this range. 

With this in mind, inefficiency for the forward blow, 
a, is defined in terms of two losses: (a) enthalpy not 
recovered and (b) pumping power. With Crfor friction 
factor : 

E= 

c, w%(T,., - Tc) dt+ 
s s 

1/2pu*Cf(L,,,lr,)A,u.dt 

cp puA,(T,-Tc)dt 
s 

(13) 

The integral is conditional, applying only over those 
fractions of a complete revolution for which u is 

positive (towards the compression exchanger). An 
analogous expression applies to the reverse blow. 

Now, for many heat exchanger surfaces [9] the heat 
transfer correlation N,,Nzi3 vs N,, parallels that for 
friction factor, C, vs N,,. For such cases it follows that 
curves of N,,L/r, (i.e. of NTU) are parallel to those of 
CfL/rh. This is not strictly true for the mterrupted 
flow passages of the wire mesh regenerator, but is an 
approximation adequate for purposes of ilkrstration. 
Setting C,L/r, = A * NTU in equation (13), therefbre, 
and normalizing : 

&= 

s 
u(z ,,. - 1) d4 + 1/2A - NTU * N&*[(y - 1)/v] 

s 
u3 d4 

(K-1) ud4 
s 

(14) 

y appears through conversion of c,, to R in forming 
characteristic speed parameter, NMA. It is left in place 
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FIG. 6. Temperature profiles and reliefs for the conditions of Fig. 5 after attainment of cyclic steady-state 
(a) Temperature profile and relief for fluid. (b) Temperature profile and relief for wall. 

in equation (14) because, with sound speed infinite 
in the incompressible fluid, the second term in the 
numerator is otherwise zero. 

u is a function of A, viz., u = Aces 4, so that 
inefficiency is a function of the form : 

E = E(&, Y, Iv, 4 NTU, NTCR, N&. (14a) 

For a given Stirling machine, i.e. for given tem- 
perature ratio, NT, given working fluid, y, for given 
volumetric porosity, IV, and given speed parameter, 
NM,, inefficiency, F is a function of A, NTU and NTCR. 

To highlight the influence of pumping loss, NMA is 
provisionally set equal to zero (no flow resistance). 
Figure 7a-c displays inefficiency, E, for flushing ratios, 
A, of 0.5, 1 .O and 1.5, respectively. Independent vari- 
able is NTU and NTcR is parameter. For A < unity, 
losses measured in terms of temperature recovery are 
zero for NTU = zero, since the fluid exits with tem- 
perature unaltered since entry. Accordingly, both sets 
of curves for A < unity show E falling to zero for 
NTU < unity. For A > unity, some particles at least 

sweep the entire matrix, and inefficiency has finite 
values for NTU small and zero, as confirmed in Fig. 
7c. All sets of curves show inefficiency rising initially 
with increasing NTU, but eventually falling, the fall- 
off following intuitive expectation. 

Figure 8 corresponds to Fig. 7 except that NhlA 
has been set equal to 0.02-a value representative of 
operation at rated conditions for the Philips 
MP1002CA air engine. The analysis has been for- 
mulated in such a way that increase in NTU means 
corresponding increase in C,. After initially following 
the trends of respective Fig. 7 at low NTU, friction 
effects begin to dominate for NTU z=- 10, to the extent 
that inefficiency increases linearly with increasing 
NTU. 

The range of NTCR covered by the curves is small- 
from 4.5 to 9.5 in the case of Fig. 7, and from 2.5 to 
7.5 for Fig. 8. These uncharacteristically small values 
are chosen for the fact that the associated variation 
has a marked effect on inefficiency. As NTcR increases 
from a value of 10 there is a gradual decrease in t: 
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l”-ar-‘oo 
NTU 
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E 10-I 

1 o-2 

lo-’ 1 I J 
0.1 1 .o 10 100 1000 

NTU 

FIG. 7. Regenerator inefficiency, E, plotted against NTU with 
thermal capacity ratio, NTcR, as parameter. N,, = 0.0 
throughout, so pumping losses are artificially suppressed. 
(a) Flushing ratio, A, ~0.5. (b) Flushing ratio, A, =unity. 

(c) Flushing ratio. A, = 1.5. 

at given NTU. There is littie advantage, according 
to the present treatment, in values of NrrR in excess 
of 100. 

The Bushing ratio of Fig. 8c best represents practical 
values. Corresponding optimum NTU lies somewhere 
between 40 and 60, inviting comparison with findings 
of Miyabe ef al. [8] : relying on indicated performance 
of a Stirling engine of their own design, those authors 
found optimum NTL' to lie between the 65 and 128 
afforded by gauzes of 100 and 150 mesh, respectively. 
The finding was consistent with predictions of their 
analytical approach, which, however, considered only 
the forward blow (i.e. which did not attain cyclic equi- 
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FIG. 8. Inefficiency, E, plotted against NTU with thermal 
capacity ratio, NTCR, as parameter. N,, = 0.02 as for Philips 
MP1002CA air engine at rated operating point. (a) Flushing 
ratio, A, =0.5. (b) Flushing ratio, A, =unity. (c) Flushing 

ratio, A, = 1.4. 

librium), and which dealt with pumping loss sep- 
arately from thermal recovery ratio. 

CONCLUSIONS 

The classic regenerator problem in complete form, 
i.e. retaining the a/at term, is capable of general 
solution for simple harmonic particle motion for 
flushing ratio of any magnitude. 
An integration algorithm appropriate to solution 
of the temperature difference equation (Lagrange 
formulation) may be intercalated with an apt solu- 
tion algorithm for the solid matrix heat balance 
(Euler) in a way which obviates interpolation 
between the two coordinate systems. 
A regenerator ‘inefficiency’, F., may be defined 
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F 

a 

I 

vhich takes into account pumping power as well 
1s incomplete temperature recovery. The depen- 
lence of inefficiency, E, on the principal operating 
jarameters, number of transfer units, NTU, ther- 
nal capacity ratio, NTCR, and flushing ratio, A, has 
)een explored. 
Regenerator performance expressed in the tra- 
litional fashion, viz., terms of temperature recovery 
atio alone is meaningless as an indication of suit- 
ability for use in the Stirling cycle machine. 
Charts are now available which permit selection of 
he operating condrtrons, NTU, NTCR and A, which, 
according to the present theory, afford minimum 
nefficiency. 
The treatment is capable of ready extension to cover 
:ompressible flow, and to take account of the tem- 
jerature dependence of matrix properties. 
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APPENDIX 

Boundary conditions (.from ReJ 3) 
Reference to Fig. 4 will confirm that, on the left-right 

blow, a sweep of unit processes leads to solutions at all ‘new’ 
pointsj, i+ 1 except the entry point I, i+ I. This is the point 
at which gas enters left at constant, uniform temperature 

t 

\ 
i+l 

TV . 

_, 2 
1 

FIG. Al. Application of finite difference algorithm at left- 
hand boundary. Right-hand case is mirror image. 

Tg(O, t) = r,, or, in normalized form. ~(1. i+ I) = i\i,. Like- 
wise, on the reverse blow, all temperatures at i+ I are com- 
puted except that at j = n,. Accordingly, algorithms are 
required to cope with these two points as exceptions to the 
unit process. 

Equation (4a) is first abbreviated to : 
Az,/AI$ 2 BAr (Al) 

where, for the case in question, the terms now represented 
by the symbol B are, indeed, constant, and where, for more 
general cases, they may be treated as constant over time 
interval A+. By the definition of the variable Ar = rB-rw 
applied to the forward blow at i = 0 (Fig. Al) : 

Ar(l,i+l) =N,-t,(l,i+l) 

Integration of equation (Al) at E. = 0 calls for the mid- 
interval value of AT, viz., & : 

&(j,j) = 1/2[N,--r,(l, i+l)+Ar(l, i)]. 

From equation (Al) : 
~~(1, i+l) = r,(l, i)+A4B&. 

Substituting this most recent expression into that preceding 
and making ~~(1, i+ 1) explicit : 

s,(l, if 1) = r,( 118 + W+-WWA; 1) 4 + %I cA2j 

The comparable expression r,(n,, if l), derived in similar 
fashion, is : 

5,(n,, i+ 1) = 
r,(n,, i) + 1/2BA+[As(n,, i) + 11 

1+1/2BA4 (A3) 

Special cases (after Ref 3) 
Equation (11) is undefined for NTU = 0 because b/a 

becomes infinite. Provided integration step size is small (i.e. 
provided advantage is not going to be taken of NTcn = large 
to integrate over an entire blow) this may be dealt with by 
expanding on the assumption that the numerical value of 
exponent a(f$ - dl,) is small : ’ 

AT + b,‘a = (AT, + b/a) exp [ ~ a(4 - &)I 
= (k,+bla)[l-44-Ml. 

Expanding and cancelling the two b/a : 
AT L AT, - (&,/a~)~(~ - 40). (A4) 


